Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level
نویسندگان
چکیده
We determined whether postnatal pulmonary hypertension induced by 70% of pregnancy at high altitude (HA) persists once the offspring return to sea level and investigated pulmonary vascular mechanisms operating under these circumstances. Pregnant ewes were divided into two groups: conception, pregnancy, and delivery at low altitude (580 m, LLL) and conception at low altitude, pregnancy at HA (3,600 m) from 30% of gestation until delivery, and return to lowland (LHL). Pulmonary arterial pressure (PAP) was measured in vivo. Vascular reactivity and morphometry were assessed in small pulmonary arteries (SPA). Protein expression of vascular mediators was determined. LHL lambs had higher basal PAP and a greater increment in PAP after N(G)-nitro-L-arginine methyl ester (20.9 ± 1.1 vs. 13.7 ± 0.5 mmHg; 39.9 ± 5.0 vs. 18.3 ± 1.3 mmHg, respectively). SPA from LHL had a greater maximal contraction to K(+) (1.34 ± 0.05 vs. 1.16 ± 0.05 N/m), higher sensitivity to endothelin-1 and nitroprusside, and persistence of dilatation following blockade of soluble guanylate cyclase. The heart ratio of the right ventricle-to-left ventricle plus septum was higher in the LHL relative to LLL. The muscle area of SPA (29.3 ± 2.9 vs. 21.1 ± 1.7%) and the protein expression of endothelial nitric oxide synthase (1.7 ± 0.1 vs. 1.1 ± 0.2), phosphodiesterase (1.4 ± 0.1 vs. 0.7 ± 0.1), and Ca(2+)-activated K(+) channel (0.76 ± 0.16 vs. 0.30 ± 0.01) were greater in LHL compared with LLL lambs. In contrast, LHL had decreased heme oxygenase-1 expression (0.82 ± 0.26 vs. 2.22 ± 0.44) and carbon monoxide production (all P < 0.05). Postnatal pulmonary hypertension induced by 70% of pregnancy at HA promotes cardiopulmonary remodeling that persists at sea level.
منابع مشابه
Effect of chronic perinatal hypoxia on the role of rho-kinase in pulmonary artery contraction in newborn lambs.
Exposure to chronic hypoxia during gestation predisposes infants to neonatal pulmonary hypertension, but the underlying mechanisms remain unclear. Here, we test the hypothesis that moderate continuous hypoxia during gestation causes changes in the rho-kinase pathway that persist in the newborn period, altering vessel tone and responsiveness. Lambs kept at 3,801 m above sea level during gestatio...
متن کاملChronic Mountain Sickness (Cms) Misdiagnosed As High Altitude Cerebral Edema (Hace) At Extreme Altitude (6400 M/21000 Ft)
Introduction: Chronic mountain sickness (CMS) represents a syndrome of secondary polycythemia along with thrombocytopenia, altered hemorheology, pulmonary and systemic hypertension, and congestive heart failure, occurring due to hypobaric hypoxia-anoxia-induced erythropoiesis reported in both native mountain residents and new climbers after prolonged stays at high and extreme a...
متن کاملElectrocardiographic patterns in man at high altitudes.
Electrocardiograims of healthy men both native and long-term residents at 14,900 feet above sea level have been obtained and classified according to their dominant pattern. Most of the tracings showed signs of either right ventricular hypertrophy or right bundle-branch block, incomplete and complete. Some of the mechanisms responsible for these electrocardiographic changes found at high altitud...
متن کاملChronic Mountain Sickness
Introduction Chronic mountain sickness (CMS) affects people who are native or long time residents of high altitude. It is characterized by an excessive erythrocytosis for the altitude of residence, severe hypoxemia and in many cases, particularly in severe CMS, high altitude pulmonary hypertension (HAPH). CMS usually begins insidiously in adult life associated probably to aging; the clinical pi...
متن کاملPulmonary artery smooth muscle cell proliferation and migration in fetal lambs acclimatized to high-altitude long-term hypoxia: role of histone acetylation.
High-altitude long-term hypoxia (LTH) is known to induce pulmonary arterial smooth muscle cell (PASMC) proliferation in the fetus, leading to pulmonary arterial remodeling and pulmonary hypertension of the newborn. The mechanisms underlying these conditions remain enigmatic however. We hypothesized that epigenetic alterations in fetal PASMC induced by high-altitude LTH may play an important rol...
متن کامل